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Let the polynomials Pn(x), n�1, be defned by P0(x)=0, P1(x)=1, an Pn+1(x)+
an&1Pn&1(x)+bnPn(x)=xPn(x), n�1. If an>0 and bn are real then there exists at
least one measure of orthogonality for the polynomials Pn(x), n=1, 2, ... . The
problem of finding conditions on the sequences an and bn under which this measure
is unique or nonunique still remains open for large classes of sequences an and bn .
Here a new criterion for the nonuniqueness of the measure of orthogonality is
proved. This was achieived by proving that the infinite-dimensional Jacobi matrix
associated with the sequences an and bn is not self-adjoint. � 1997 Academic Press

1. INTRODUCTION

By measure of orthogonality we mean a probability measure + on the
Borel subsets of an interval [:, ;] such that its support contains infinitely
many points and the moments

|
;

:
xn d+, n�0,

are finite in the case that the interval [:, ;] is not bounded. To such a
measure corresponds, up to a constant, a nondecreasing right continuous
function +(x) with infinitely many points at which it increases. The assump-
tion that the increasing points are infinitely many is equivalent to the
assertion

|
;

:
P2(x) d+>0

for every polynomial P.
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The Gram�Schmidt orthogonalization procedure applied to the sequence
1, x, x2, ..., xn, ... in the Hilbert space L2(+) yields a three-term recurrence
relation and a sequence of orthogonal polynomials

f1=1, f2=(x&b1) f1 ,
(1.1)

fn+1=(x&bn) fn&
k2

n

k2
n&1

fn&1, n=2, 3, ...,

where

k2
n=& fn&2=|

;

:
| fn(x)| 2 d+, bn=

1
k2

n
|

;

:
x | fn(x)| 2 d+.

Thus the sequence Pn(x)=k1 fn(x)�kn , n=1, 2, ..., is a sequence of
orthonormal polynomials which satisfy the recurrence relation

an Pn+1(x)+an&1Pn&1(x)+bnPn(x)=xPn(x), (1.2)

P0(x)=0, P1(x)=1, n=1, 2, ..., (1.3)

where

an=
kn+1

kn
>0. (1.3)

Conversely, given a sequence of polynomials, defined by (1.2) and (1.3)
with an>0 and bn real, there exists at least one measure of orthogonality
such that

|
;

:
Pi (x) Pj (x) d+=$ij .

An important problem in the theory of orthogonal polynomials is the
problem of finding conditions on the sequences an and bn such that the
measure is unique. Difficulties appear in the case when an is unbounded.

It is well known that this uniqueness problem is equivalent to the
uniqueness (determinary) of the power moment problem and that both
problems are equivalent to the problem of finding conditions under which
the Jacobi matrix T, defined by

Te1=a1 e2+b1 e1 ,
(1.4)

Ten=an en+1+an&1en&1+bnen , n>1,

is an (essentially) self-adjoint operator in an abstract separable Hilbert
space H with the orthonormal basis en , n�1. Among books and articles
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where these subjects and their relationships are treated we mention [1, 2,
6, 8�11]. For criteria concerning the self-adjointness of T (determinacy of
the moment problem) see [1, 2, 7, 9, 10]. We mention the criterion of
Carleman,

:
�

n=1

1
an

=�,

and the criterion of Dennis and Wall,

:
�

n=1

|bn+1|
an an+1

=�.

For the non-self-adjointness of T (indeterminary of the moment problem)
the best known criterion (in terms of the sequences an and bn) is the criterion
of Berezanskii [2, p. 507] which holds under the conditions

(i) |bn |�M<�, n�1,

(ii) :
�

n=1

1
an

<�

and for n�n0 (iii) an+1 } an&1�a2
n .

One of the disadvantages of this criterion is the assumption that the
sequence bn is bounded.

A relatively large number of criteria for both determinary and indeter-
minary concern particular cases with respect to the sequences an and bn

(see Refs. [3, 5] and the references presented therein). Many of these are
based on the assumption that the sequence

a2
n

bn bn+1

, bn>0, n�1

is a chain sequence or equivalently that T is a positive operator [12]. This
assumption restricts the spectrum of T to the semi-axis. In general, there
still exist large classes of sequences an and bn to which none of the known
criteria can be applied.

Here we prove a new criterion for the non-self-adjointness of T which
does not restrict the spectrum of T and is easy to handle in many cases
where the criterion of Berezanskii is not applicable. The proof is based on
a separation of T (T=AV*+VA+B) in terms of simpler operators A, B,
V, and V*. Some results which we need about the operators AV*, VA, and
B are presented in Section 2. The main results (Theorem 3.1 and its
corollaries) are presented in Section 3.
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2. PRELIMINARY RESULTS AND LEMMAS

In an abstract complex Hilbert space H with the orthonormal basis en ,
n�1, and scalar product (. .) the operator (1.4) can be written as

T=AV*+VA+B, (2.1)

where A, B are the diagonal operators Aen=anen , Ben=bnen ; V is the
unilateral shift (Ven=en+1); and V* is the adjoint of V (V*en=en&1 ,
V*e1=0), Usually T is defined on the linear manifold D(T ) consisting of
finite linear combinations of the basis en . It is symmetric because (Tx, y)=
(x, Ty) for every x, y in D(T) and D(T) is dense in H. If the sequences an

and bn are bounded then the operators A and B are bounded; consequently
T is a bounded operator on H and there is no problem with respect to the
self-adjointness because D(T)=D(T*)=H. Also, there is no problem in
the case an is bounded and bn is unbounded. Then T is also self-adjoint
with D(T)=D(B). A problem exists in the case where at least an is
unbounded. In that case it is well known from the general theory of sym-
metric operators (see for instance [13, p. 108]) that T is not self-adjoint if
and only if there exists an x{0 in H such that

T*x=ix (i 2=&1). (2.2)

In particular, for the operator (2.1) the following criterion [2, 7] is well
known. If the series

:
�

n=1

|Pn(i )|2 (i 2= &1) (2.3)

converges (diverges), where Pn(x) are the polynomials defined by (1.2)
and (1.3), then T is not self-adjoint (is self-adjoint). The proof of the
Berezanskii criterion is based on this more general criterion, which is not
easy to handle.

The method which we follow here is based on the separation (2.1) of the
Jacobian matrix T and requires a precise study of the definition domains
of A, B, VA, and AV*. With respect to the problem of self-adjointness
of T we assume, without loss of generality, that bn{0 so that B has a
bounded inverse. In the case an ( bn) is not bounded, A (B) has a self-
adjoint extension to the range of the bounded and self-adjoint diagonal
operator

A0 : A0 en=
1
an

en \B0 : Ben=
1
bn

en+ , n�1. (2.4)

In fact, the spectrum of A0 (B0) consists of the eigenvalues of A0 (B0) and
the point zero belongs to the essential spectrum of A0 (B0). Therefore the
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inverse A&1
0 (B&1

0 ) of A0 (B0) exists and its definition domain D(A&1
0 )=

D(A)=(D(B&1
0 )=D(B)) is dense in H. Thus A=A&1

0 (B=B&1
0 ) is an

unbounded self-adjoint operator in H with its definition domain the range
of the bounded operator A0 (B0). In other words,

D(A)=[A&1y, y # H] (D(B)=[B&1y, y # H]) (2.5)

or

D(A)={ f # H: :
�

n=1

a2
n f 2

n <�, fn=|( f, en)|= (2.6)

\D(B)={ f # H: :
�

n=1

b2
n f 2

n <�=+ . (2.7)

Sinve V is an isometry,
D(VA)=D(A). (2.8)

The definition domain of AV* is the set

D(AV*)=[x # H: V*x # D(A)]=[x # H: V*x=A&1y, y # H]. (2.9)

Since V*V=I (identity operator) the equality V*x=A&1y is equivalent to
V*(x&VA&1y)=0 or to x=VA&1y+ce1 , in which c is a constant. Thus

D(AV*)=[x # H: x=VA&1y+ce1 , y # H]. (2.10)

Lemma 1. Let C be the diagonal operator

Cen=
an

an+1

en , n�1, (2.11)

where the sequence an�an+1 is bounded. Then the bounded operator VC has
the following properties:

VCf=A&1VAf, f # D(A) (2.12)

(VC)* h=AV*A&1h, h # H. (2.13)

Proof. For every f in D(A) we have

A&1VAf= :
�

n=1

an

an+1

( f, en)en+1=VCf.

This proves (2.12). Let h be an element of H. Then, due to (2.12), for every
g in D(A) we have

( g, (VC)* h)=(VCg, h)=(A&1VAg, h)=(VAg, A&1h). (2.14)
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Since A&1h belongs to D(A) and since the boundedness of an�an+1 implies
D(A)�D(AV*) we obtain from (2.14)

( g, (VC)* h)=( g, AV*A&1h), g # D(A). (2.15)

Relation (2.13) follows from (2.15) because D(A) is dense in H.

Lemma 2. Let the sequence bn�an(an�bn) be bounded. Then D(A)�D(B)
(D(B)�D(A)) and the operator A&1B (B&1A) has an extension to the
bounded self-adjoint and diagonal operator D (D&1) defined by

Df= :
�

n=1

bn

an
( f, en)en , f # H (2.16)

\D&1f = :
�

n=1

an

bn
( f, en)en , f # H+ . (2.17)

Proof. A&1B (B&1A) is bounded on the dense linear manifold D(B)
(D(A)) and can therefore be extended to the bounded operator D (D&1).
The relation D(A)�D(B) (D(B)�D(A)) follows from (2.6), (2.7), and the
boundedness of bn�an (an�bn). Note that on D(A) & D(B) the relation

AD=DA (BD&1=D&1B) (2.18)

holds.

Remark. The definition domain D(T) of T=AV*+VA+B is

D(T )=D(A) & D(B) & D(AV*). (2.19)

Thus

D(T)�D(A). (2.20)

3. MAIN RESULTS

Assume that

lim
n � �

an=� (3.1)

lim
n � �

an

an+1

=: (3.2)

lim
n � �

bn

an
=# (3.3)

and denote by *i , i=1, 2, the roots of the algebraic equation :x2+#x+1=0.
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Theorem 3.1. Let one of the conditions

(i) :{0, |*i |>1, i=1, 2,
(3.4)

(ii) :=0, |#|<1,

be satisfied. Then the operator T=AV*+VA+B is not self-adjoint.

Note that :�0 and the condition (i) implies that 0<:<1.

Proof. We shall prove that there exists an element x{0 in D(T*) such
that T*x=ix (as noted in Secton 2).

Consider the bounded operator

V*+VC+D&iA&1, (3.5)

where, due to (3.1), the operator A&1 is compact. The operator (3.5) can
be written as

V*+V(C&:I )+:V+(D&#I)+#I&iA&1,

where, due to (2.11), (3.2) and (2.16), (3.3), both operators C&:I and
D&#I are compact. Thus (3.5) has the form

V*+:V+#I+K

or

V*[(:V 2+#V+I )+VK], (3.6)

where

K=V(C&:I )+D&#I&iA&1. (3.7)

Observe that VK is compact.
Since the spectrum of V is the entire closed unit disc, condition (i) or (ii)

implies that the operator :V2+#V+I=:(V&*1 I )(V&*2I ) in case :{0
or the operator I+#V in case :=0 has a bounded inverse. Thus the
operator (3.6) can be written as

V*(:V2+#V+I )(I+2), (3.8)

where

2=(:V 2+#V+I )&1 VK (3.9)
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is compact. Now the Fredholm alternative [13, p. 136] implies either
(I+2)x=0, x{0, or the operator I+2 has a bounded inverse. Thus
either x given by (I+2)x=0 or

x=(I+2)&1 (:V*+#V+I )&1 e1 (3.10)

is a solution of the equation

V*(:V2+#V+I )(I+2)x=0

or

(V*+VC+D)x=iA&1x, x # H, x{0. (3.11)

Since A&1x # D(A) we obtain from (3.11)

A(V*+VC+D)x=ix

and

( f, A(V*+VC+D)x)=( f, ix), f # D(T).

Thus by (2.20) and the self-adjointness of A,

(Af, V*x+VCx+Dx)=( f, ix)

or

(Af, V*x)+(Af, VCx)+(Af, Dx)=( f, ix)

and

(VAf, x)+((VC )* Af, x)+(DAf, x)=( f, ix). (3.12)

Now by Lemmas 1 and 2 we find from (3.12)

(VAf, x)+(AV*f, x)+(DAf, x)=( f, ix)

or

(VAf, x)+(AV*, x)+(Bf, x)=( f, ix)

and

(Tf, x)=( f, ix), f # D(T ). (3.13)

The last relation means that x # D(T ) and T *x=ix.
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Corollary 1. Let an � � and let

#2�4:.

Then the condition :�1 is necessary in order that the moment problem
associated with an and bn is determinate. In particular, the above condition is
necessary in order that the moment problem corresponding to the symmetric
polynomials anPn+1(x)+an&1Pn&1(x)=xPn(x), P0(x)=0, P1(x)=1, is
determinate.

Proof. Suppose that the moment problem associated with an and bn is
determinate, i.e., T=AV*+VA+B is self-adjoint. Then :�1 must be
satisfied because :<1 implies, by Theorem 3.1, non-self-adjointness of T.

Corollary 2. Let an � �,

lim
n � �

an

an+1

=:<1,

and let the sequence bn be bounded. Then T=AV*+VA+B is not self-
adjoint.

Proof. Since bn is bounded,

#= lim
n � �

bn

an
=0,

and since :<1, the condition (i) of the theorem is satisfied.

Remark. A well known comparison theorem, due to Carleman (see Ref.
[4]), states that ``If the sequences an&a$n and bn&b$n are bounded then the
associated moment problem with the sequences a$n , b$n is determinate,
provided the associated moment problem with the sequences an and bn is
determinate.'' In other words, the addition of bounded sequences to the
sequences an and bn leaves the determinacy of the moment problem
invariant, since a self-adjoint operator perturbed by a bounded operator is
also self-adjoint. This result of Carleman folows easily on the basis of
equivalence of self-adjointness and determinacy of the moment problem.
Also, we can easily proved the following:

Theorem 3.2. Let the sequences an&a$n and bn&b$n be bounded and let
T=AV*+VA+B be non-self-adjoint. Then T $=A$V*+VA$+B$ is also
non-self-adjoint.
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Proof. Observe that C=T&T $=(A&A$) V*+(A&A$) V+B&B$ is
bounded. This means that self-adjointness of T $ implies self-adjointness of
T contrary to the assumption. Thus T $ is not self-adjoint.

Putting together Theorems 3.1 and 3.2 we obtain

Corollary 3. Let the conditions of Theorem 3.1 be satisfied and let
cn , dn be bounded sequences. Then the moment problem associated with the
sequences an+cn , bn+dn is indeterminate.

Example 1. The sequence of polynomials Qn , n�1, defined by

Q1(x)=1,

&xQ1(x)=&(*1++1) Q1(x)+*1Q2(x),

&xQn(x)=*n Qn+1(x)++nQn&1(x)&(*n++n) Qn(x),

appears in the theory of birth and death processes [7].

The above recurrence relation, by setting

{1=*1

{n=
*1 *2 } } } *n

+2 +3 } } } +n
, n�2,

and

Qn(x)=(&1)n+1 �*n

{n
Pn(x), n�2.

is transformed to the normalized form

- *n +n+1 Pn+1(x)+- *n&1+n Pn&1(x)+(*n++n) Pn(x)=xPn(x)
(3.15)

P0(x)=0, P1(x)=1, *n>0, n�1, +n>0, n�2.

It is well known [7, p. 528] that when +1>0 the condition

:
�

n=1

?nQ2
n(0)=� (3.16)

is a necessary and sufficient condition that the moment problem associated
with +n and *n is determinate.

In (3.1),

?n=
*1 *2 } } } *n&1

+2+3 } } } +n
, ?1=1
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and

Qn(0)=1++1 :
n&1

j=1

1
*j?j

.

Now consider the following example for the birth and death processes:

*n=+n=kn, n�1, k>1. (3.17)

Then

?n=
1

kn&1 , *n?n=k, Qn(0)=n,

and the series in (3.16) takes the form

:
�

n=1

n2

kn&1 ,

which converges by the ratio test. Thus the above-mentioned criterion
implies that the moment problem associated with the sequences (3.17) is
indeterminate.

To apply our criterion we obtain from (3.15)

an=kn
- k, bn=2kn, k>1

and

:= lim
n � �

an

an+1

=
1
k

, #= lim
n � �

bn

an
=

2

- k
.

The roots *1 and *2 of the equation :x2+#x+1=0 are

|*1 |=|*2 |=- k>1

and Theorem 3.1 implies the indeterminacy of the moment problem.

Remark. Of course, Theorem 3.1 does not apply to all well-known
indeterminate problems. Also, it does not cover as a particular case the
Berezanskii criterion. However, there exist large classes of sequences where
Theorem 3.1 works and the Beresanskii criterion does not. We give below
an example.
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Example 2. Let an=n! , n=1, 2, 3, ..., and let bn be an unbounded
sequence of real numbers such that

lim
n � �

bn

n!
=0.

In this case our criterion predicts indeterminacy because condition (ii) of
Theorem 3.1 is satisfied. The criterion of Berezanskii cannot be applied
because the sequence bn is unbounded.
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